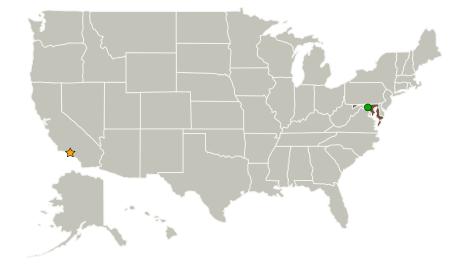
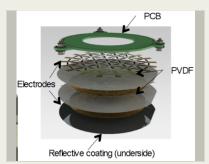
Deformable Mirror for Spaceflight

Completed Technology Project (2015 - 2016)


Project Introduction


The specific objective of this IRAD is adapting a precision glass slumping technology that GSFC has developed for making grazing incidence mirrors for making normal incidence mirrors. These mirrors, extremely thin (0.2mm) and lightweight (0.5 kg/m2), will be sent to Dr. Keith Patterson at JPL and colleagues at Caltech who will attach precision actuation mechanisms on their backs to adjust their focus and other characteristics, making them fully diffraction-limited at 500nm wavelength. The requirements on the mirror substrate are: They must be no more than 0.2mm thick, because of both a desire to have a lightweight mirror and the fact that the actuation mechanism has a very limited dynamic range, which is inversely proportional to mirror substrate thickness. They must be diffraction-limited at all but the lowest spatial frequencies. In practice, this means that any deviation from the mathematic prescription must be well below 20 nm. This is because the actuation mechanism is not effective in removing errors with spatial periods shorter than about 20mm.

Anticipated Benefits

N/A

Primary U.S. Work Locations and Key Partners

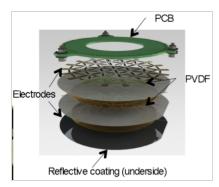
The elements of a deformable mirror.

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Project Website:	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas	3	

Center Innovation Fund: GSFC CIF

Deformable Mirror for Spaceflight


Completed Technology Project (2015 - 2016)

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations

Maryland

Images

Deformable Mirror

The elements of a deformable mirror.

(https://techport.nasa.gov/imag e/19140)

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Innovation Fund: GSFC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

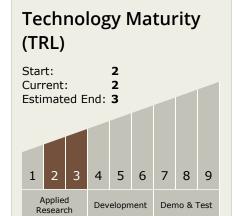
Peter M Hughes

Project Manager:

Stan Hunter

Principal Investigator:

William W Zhang



Center Innovation Fund: GSFC CIF

Deformable Mirror for Spaceflight

Completed Technology Project (2015 - 2016)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - □ TX08.2 Observatories
 - └ TX08.2.1 Mirror Systems

